

Filtration Fundamentals: The basics and why filtration matters today

Fox-Wolf Watershed Alliance Watershed Conference Samantha Brown, PE, Regional Regulatory Manager

Contech Engineered Site Solutions

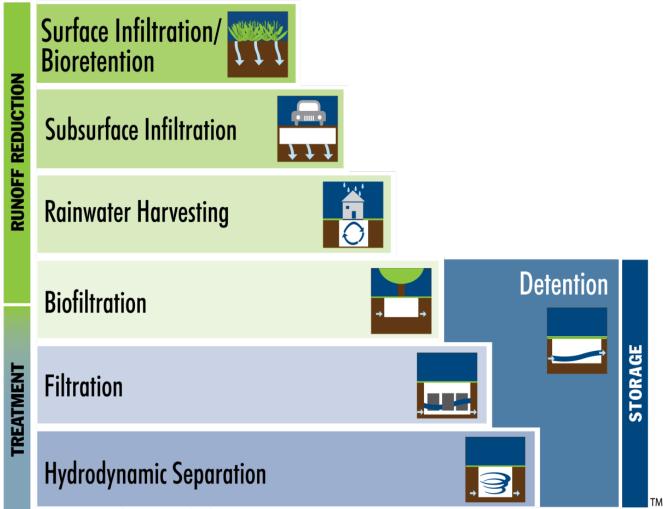
Bridges, Drainage, Stormwater Management, Erosion Control, Structures, Retaining Walls, Roadway & Earth Stabilization

Agenda

- Filtration Overview
- Filtration in Stormwater
- Filtration Innovation
- Discussion

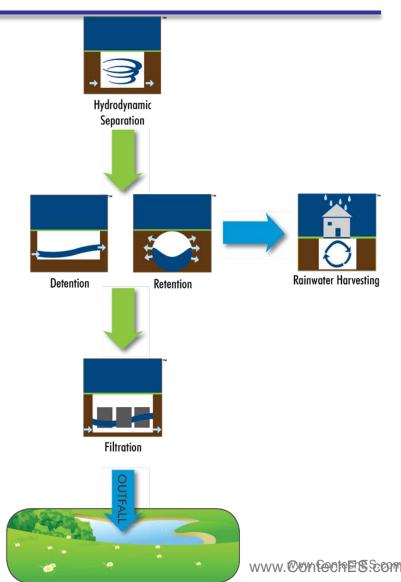
Complying with Water Quality Regs

- Low Impact Development & Green
 Infrastructure
- Design methodology that utilizes Integrated Management Practices (IMPs) for Stormwater Management
- Intent is to mimic predevelopment hydrology
- Examples:
 - o Natural areas
 - o Rain gardens
 - o Bioswales
 - o Porous pavements


Manufactured Treatment Devices

- Complement traditional LID practices
 - o Pretreatment
 - o Enhance longevity
 - o Polishing BMP
- WQ solutions for sites with design constraints
 - o Low permeability soils
 - Potential contamination of groundwater
 - o Steep slopes
 - o Maximize space
- Verified performance

Stormwater Solutions Staircase


© 2014 Contech Engineered Solutions LLC

www.Confectels.com

Advancing Treatment...

- Trending shift from HDS to Filtration
 - o Great Lakes Region
 - o Indianapolis suburbs
 - \circ Ohio
 - \circ Wisconsin
- Pollutants of Concern
 - \circ TSS
 - o Nutrients
 - o Metals

So Many Choices...

	Hydrodynamic Separation	Filtration		
Pollutants of Concern	TSS	TSS, Nutrients, Metals		
Targeted Particle Size Distribution	> 50 micron	< 50 micron		
Recognized Testing Protocol	 Lab Testing: NJDEP Field Testing: TARP Tier II 	 Lab Testing: NJDEP Field Testing: TAPE or TARP Tier II 		
Placement Relative to Detention	Upstream for effective performance	 Upstream or downstream 		

Typical Applications

- Standalone Treatment
 - o New Development
 - o Redevelopment
- LID Pretreatment
 - o Subsurface Infiltration
 - o Rainwater Harvesting
- Polishing Treatment
 - o Downstream of Detention

What is filtration?

- The act or process of removing something unwanted from liquid, gas, etc., by using a filter (Merriam Webster Learners Dictionary)
- Inert Media Filtration: A unit process in which suspended solids and associated particulate pollutants are removed by use of a media such as sand or perlite.

• Source: Minton, Stormwater Treatment Second Edition

- Sorptive Media Filtration: A unit process in which dissolved constituents are removed by attachment to a filter media at the molecular level.
 - o Source: Minton, Stormwater Treatment Second Edition

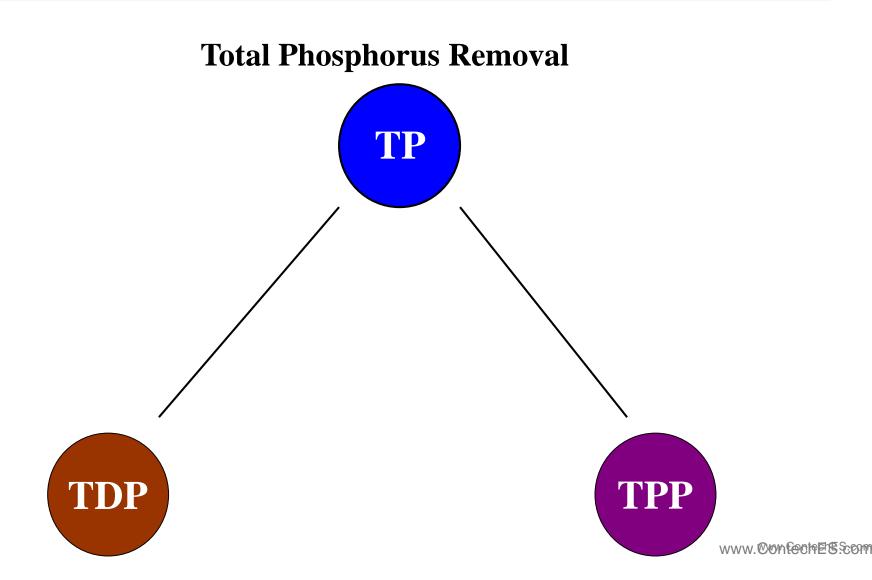
Common Filters

Factors Affecting Filter Performance

- Media Type

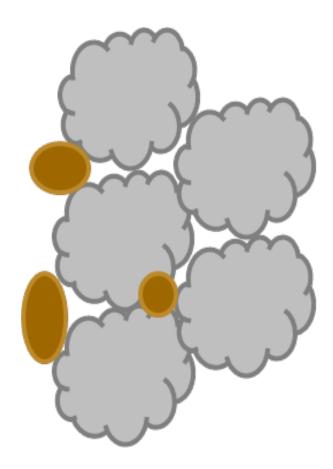
 Active vs Inert
- Media Porosity/Gradation

 Coarse vs Fine
- Media Shape


 Irregular vs symmetrical
- Media Thickness

 Depth vs Surface
- Hydraulic Loading Rate
 Slow vs Fast

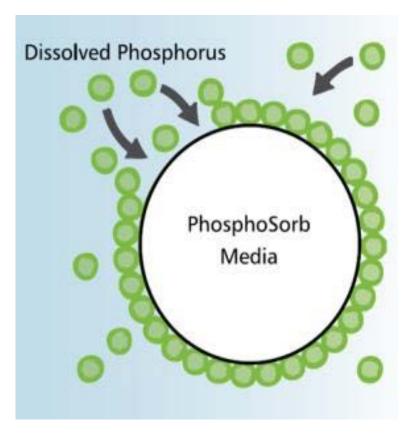
Maximizing Load Reduction



Physical/Inert Media Filtration

Examples: Screening, Media filters, Sand filters, Biofilters, Infiltration

- Inert media is physical barrier to solid particles
- Sedimentation often plays major role in filter effectiveness
- Good control of solids and attached pollutants
- Removal of particulate bound pollutants (i.e. metals and phosphorus)
- No removal of dissolved/soluble pollutants
- Leaching possible
- Longevity must be considered



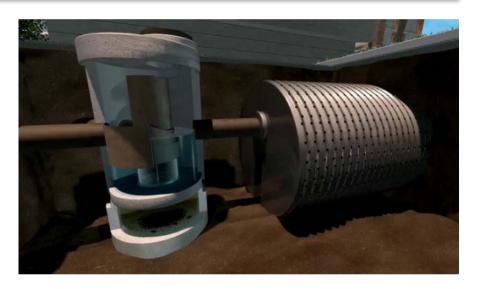
Reactive Filtration

Reactive filtration media with an affinity for target pollutants

- Works in parallel with physical filtration and/or sedimentation
- Target pollutant is bound to media via adsorption, ion exchange etc.
- Effective removal of soluble/dissolved pollutants
- Boosts overall pollutant load reduction
- Prevents leaching

Filter Media Variables

- Range of particle sizes better than uniform size
- Finer media more effective but limits flow
- Irregular shaped particles better than symmetrical
- High surface area improves reactive capacity
- All else equal deeper is better assuming bed filtration

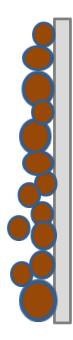


Critical Filter Design Considerations

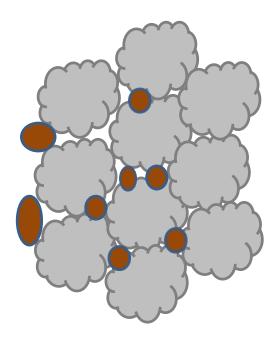
 Pretreatment common to reduce load on media and extend maintenance cycle

Knock out the coarse stuff

- Media type and gradation
 - Often governed by pollutants of concern and performance goals
 - o Coarse vs Fine
 - o Irregular vs. symmetrical


Critical Filter Design Considerations

- Hydraulic Loading Rate (gpm/ft² of media surface area)
 - High loading rates result in smaller filters but all else equal need more maintenance
 - \circ Loading rates in stormwater range from 0.05 >10 gpm/ft²
- Longevity
 - Filters must be designed with longevity in mind especially if frequent maintenance is not realistic
- Filtration red flags
 - o Media toxicity
 - o Media variability
 - o Media availability
 - o Lack of field longevity experience



Filtration Approaches

Surface/Membrane Filtration

Bed Filtration

Sand Filter (Sedimentation, Physical Filtration)

www.@onteches.com

Sizing a Sand Filter

$$A_f = \frac{WQ_v d_f}{k(h_f + d_f)t_f}$$

Where:

Af	=	Surface area of filter bed (ft2)
WQv df	=	Water Quality Volume(cf)
ď	=	Filter bed depth (ft)
k	=	Coefficient of permeability of filter media (ft/day)
hf	=	Average height of water above filter bed (ft)
tf	=	Design filter bed drain time (days) (1.67 days or 40 hours is recommended
		maximum t _f for sand filters, two days for bioretention)

Sand: 3.5 ft/day (City of Austin 1988) Peat: 2.0 ft/day (Galli 1990) Leaf compost: 8.7 ft/day (Claytor and Schueler, 1996) Bioretention Soil: 0.5 ft/day (Claytor and Schueler, 1996)

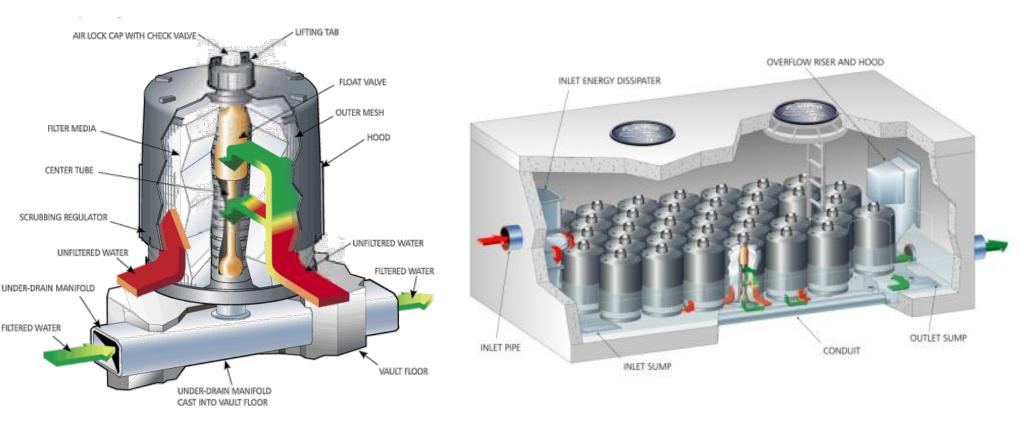
Evolution of Filter Technology

Horizontal Bed Filter

- Low infiltration rates
- Solids accumulate on surface
- Typically sand as media
- Large, land intensive

Horizontal Bed Filter

Radial Flow Filter


- Increased longevity
- Smaller structures
- Easier maintenance
- Custom filter media options

Manhole StormFilter

Innovative Media Filtration

Media Filtration

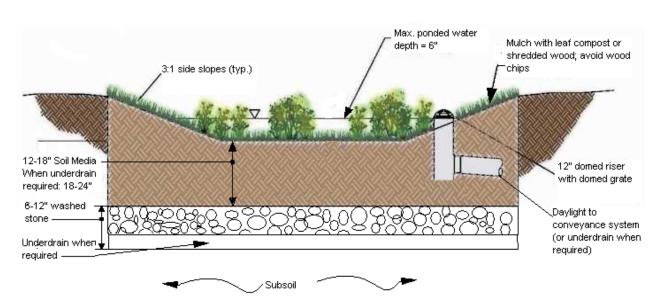
	PhosphoSorb™	Perlite	CSF [®] Leaf Media	ZPG
Sediments		-		-
Phosphorous				
Oil and Grease				-
Soluble Metals				
Organics				
Nutrients				

Innovative Membrane Filtration

Pleated Membrane Filter

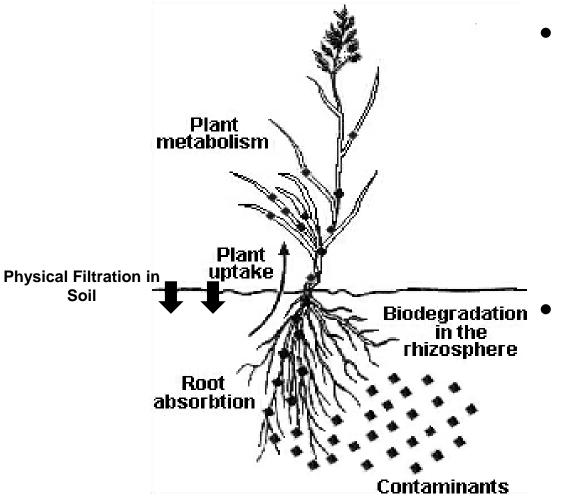
Evolution of Filter Technology

Maximum Surface Area in Compact System



Jellyfish Filter

Bioretention/Biofiltration


Source: NYSDEC Chap. 5 NYS Stormwater Management Design Manual

Pollutant Removal Mechanisms

- Physical/chemical processes
 - Filtration
 - Adsorption/absorption
 - Cation/anion exchange
 - Metals complexing
- Biological processes
 - Degradation/decomposition
 - Plant/bacteria uptake

Conventional Bioretention

- Typical bioretention media infiltration rate = 1-12 in/hr
- 5-10% of contributing impervious drainage area
- Individual components designed by engineer and sourced by contractor:
 - Mulch
 - Soil
 - Stone
 - Underdrain Piping
 - Plants
- Installation by contractor
- Maintenance by landscape crew



Engineered High Performance Biofiltration

High Performance Biofiltration

- High Flow Media
 - Same principles as traditional biofiltration
 - o 100+ inches/hr flowrate
 - Reduced footprint typically
 1% of tributary drainage area
 - Quality control of media composition

Maintenance

www.confectees.com

Maintenance

- Longevity, Longevity, Longevity.....
- All filters clog eventually
- Must strike balance between loading rate and longevity
- Ensure maintainability

BMP Maintenance

Yearly O&M Costs per Impervious Acre

BMP	Base Cost	Sizing per Impervious Acre	Frequency	Confined Space	Annual Cost per Impervious Acre	Activities
Bioretention ASCE Mean Cost	\$0.88/sf ⁽¹⁾	2178 sf	Annual	No	\$1,900	Trash and debris removal, sediment removal from overflow, vegetation management, mulching, pest control
Bioretention Western Washington	Early \$1.50/sf ⁽²⁾ Mature \$0.75/sf ⁽²⁾	1750 sf	Annual	No	Early \$2,600 Mature \$1,300	Trash and debris removal, sediment removal from overflow, vegetation management, mulching, pest control
Filterra®	\$100- \$500/system ⁽³⁾	1 system	Annual	No	\$500	Trash and debris removal, replace mulch, vegetation management
StormFilter®	\$250/cart ⁽³⁾	6 - 18" cartridges	1 - 3 years	Yes	\$1,000	Vactor vault, replace cartridges
CDS®	\$1,500 ⁽³⁾	4' dia. manhole	1 - 3 years	No	\$1,000	Vactor sump and floatables

1. Clary, Jane, H. Piza. 2017, Cost of Maintaining Green Infrastructure. ASCE. ISBN:9780784414897

2. Cost Analysis for Western Washington LID requirements and Best Management Practices (Herrera 2013)

3. Third party maintenance by Contech Qualified Maintenance Providers

Verified Performance

- NJDEP Lab Protocol
- TAPE Field Protocol
- WEF STEPP
- Wisconsin DNR
 - Efficiency of Proprietary Filtration Devices Protocol

Discussion

- We rely on many different filtration systems and fundamentals are key to success/functionality
 - o Choose right tool for the job
 - o What are targeted pollutants?
- Inspection & Maintenance
 - o Consider pretreatment and treatment trains
- Innovative is essential but don't overlook the fundamentals
 - Will it remove target pollutants?
 - o Is sizing realistic?
 - o Life cycle cost

Questions?

Samantha Brown, PE Regional Regulatory Manager <u>sbrown@conteches.com</u> 859-321-5825