

ENGINEERS | PLANNERS | SCIENTISTS | CONSTRUCTION MANAGERS

March 7, 2018 FWWA – Green Bay, WI Presented by, Joseph Pfeiffer, PWS

Knowledge • Creativity • Innovation | www.kci.com | Employee-owned since 1988

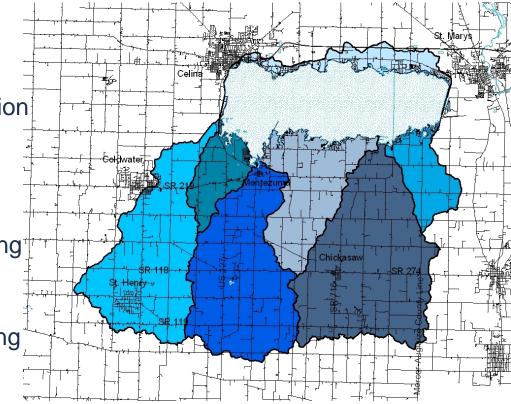
Guerilla Tactics – The application of unconventional approaches by small groups of individuals against a larger more formidable opponent that seeks to utilize the strengths of the opponent against itself.

Restoration of Ecosystem Function

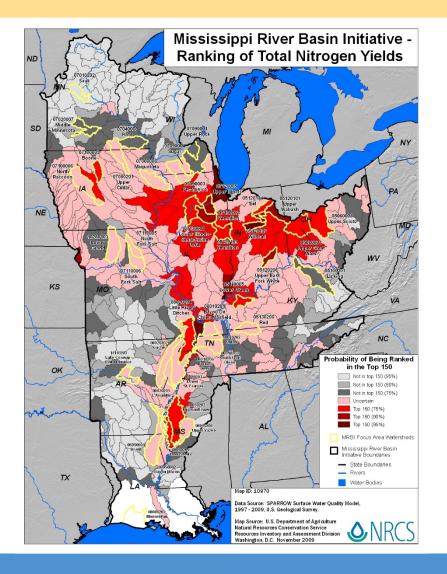
We are at War.....

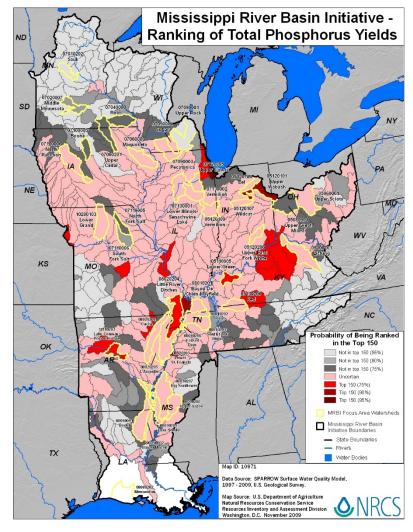
We understand the enemy..... We have the commitment...... We have the weapons.....

But.....we are an insurgency

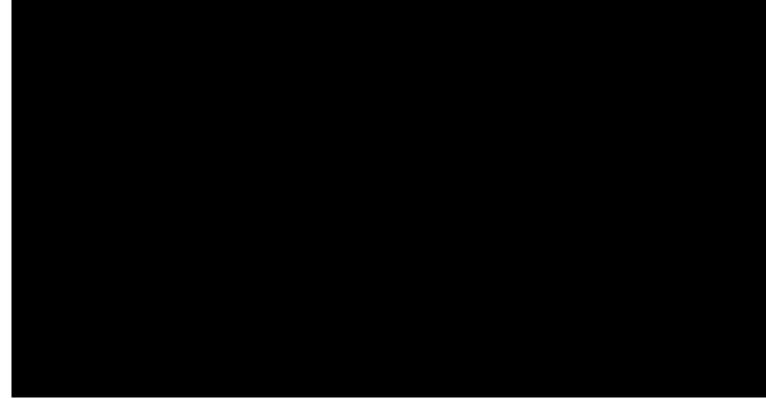


Grand Lake St. Marys


- 21 square mile man made lake in West Ohio
- 52 square mile watershed
- 425 million in agricultural production
- 125 million in tourism


►Key issues

- Excessive nutrient loading resulting in Hypo-trophic condition in lake and watershed
- Blue Green algal blooms producing mycrosystin toxins


Impacts

- Algal blooms shut down all use of the lake in 2009/10
- Estimated loss of \$77 million to local economy
- Loss in housing value of 25 million
- No Freddie Mac/Fannie Mae funding for homes in proximity to lake
- Identified public health threat

Ohio Governor Strickland News Conference – July 30, 2010

The Daily Standard Celina, Ohio

KC I

Primary Responses

- State of Ohio TMDL
- Emergency watershed regulations put into place
- NRCS funding of conservation practices
- Local formation of the Grand Lake St. Marys Restoration Commission

Grand Lake St. Marys Strategic Plan

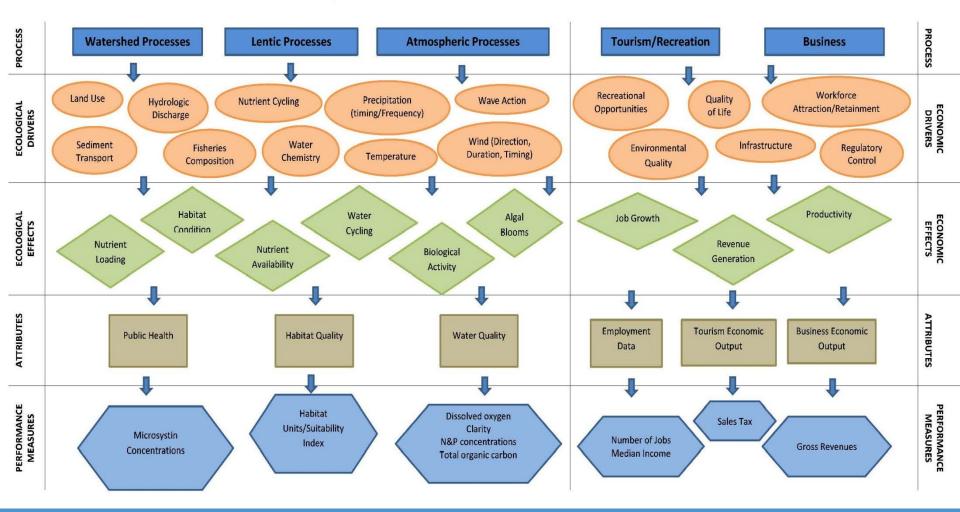
- Commissioned by LRC
- Focused on Comprehensive Approach
- Strong Emphasis on Economic Viability
- Included both Economic and Ecological Drivers
- Cornerstone Elements
- Simultaneous and coordinated attack
 - Historic residual problems
 - Existing processes
 - Future Direction

Prepared By: The Grand Lake St. Marys Restoration Commission

In Consultation with

KCI Associates of Ohio, P.A. 388 S. Main Street Suite 401 Akron, OH 44311 Phone: 330.564.9100

January 2011


GLSM Strategic Plan - Tactical Diagram -Grand Lake St. Marys Lake Facilities Authority **Private** Investment Economic Potential of Restored Ecosystem Infrastructure Development Development Plan Economic Alum Treatments PCTT Restoration **Rough Fish Recognized Economic Impacts** PCLW Removal from Lake Stressors Engine **Revenue Sharing** ALCOA from Restorative Ventures Enterprises Natural Causes and Strategic The Assergia Teas for the Grand Late for Martin Remove **Resources Capital** Sources Lake Stressors Grants to Improvement Plan for Universities Program Restoration Grand Lake illes Alexand Manufacture Alexandre Alexandre RESTORATION of GLSM **Economic Revitalization Initiatives** been W (non-profit) **Governor's Cup** Regata Development and Allocation of Funding for 75 Fishing Lake Manager Indirect Revenue Producing Programs **Tournaments**

Conceptual Ecosystem Revitalization Model - CERM

Environmental Quality

Economic Climate

Strategic Plan - Weighting Matrix

Strategic Plan – Matrix Prioritization

LRC	Economic	Scale of	Lag Time to	Term of	Economic	Implementation	Total
Project	Benefit	Effect	Functional Effect	Effect	Value	Strategy	Score
Littoral Wetland Restoration	8.25	5	6	15	45	2.5	81.75
Sequestration of Soluble Reactive Phosphorus	6.75	10	10	3	45	2.5	77.25
Dredge Sediment Depositions	7.5	5	2	15	45	2.5	77
Beneficial Use of Organic Waste	7.5	5	6	9	45	4	76.5
Treatment Train Establishment	7.5	5	6	9	18	2.5	48
Rough Fish Removal	5.25	5	10	3	9	2	34.25
Algal Flipping	8.25	5	6	3	9	1	32.25
Aeration and Circulation	8.25	5	6	3	9	1	32.25
Water Level Management	8.25	5	6	3	9	1	32.25

GLSM Consolidated Action Plan

Consolidated Action Plan – Matrix Prioritization

NRCS	Water Quality	Scale of	Lag Time to	Term of	Nutrient Load	Implementation	Total
Project	Benefit	Effect	Functional Effect	Effect	Removal	Strategy	Score
Cover Crops	12	8	10	3	45	5	83
Conservation Tillage	9	8	10	3	45	5	80
Manure Management Technology	12	6	6	6	45	1.5	76.5
Filter Strips or Riparian Buffers	12	8	6	9	27	2	64
Filter Areas	12	6	6	6	27	4	61
Wetlands	12	3	4	15	18	2	54
Tile Control Structures	6	5	6	6	18	4	45
Milkhouse Wastewater	6	2	6	6	18	4	42
Lawn Fertilizer Reduction	12	1	10	3	9	5	40
Septic Systems	12	1	10	3	9	5	40
Streambank Protection	9	6	6	3	9	5	38
Nutrient Management Plans	9	4	6	3	9	1	32

OEPA	Health/Welfare	Scale of	Lag Time to	Term of	Nutrietn Load	Implementation	Total
Project	Benefit	Effect	Functional Effect	Effect	Removal	Strategy	Score
Lake Alum Treatment	3	10	10	6	45	5	79
Hydrogen Peroixide/ Alum Treatment	3	10	10	6	45	5	79
Dredging	3	10	2	9	45	1.5	70.5
Constructed Wetlands	3	2	10	9	27	1.5	52.5
Controlled Drainage	1.5	2	10	9	27	1.5	51
Treatment Systems on Tributaries	3	2	4	9	27	5	50
Restoration of Buffers and Streams	3	2	6	9	27	1.5	48.5
Filter Strips/Areas (*FOTG 393-Designed)	1.5	2	6	9	27	1.5	47
Grassed Waterways	0.75	2	6	9	27	1.5	46.25
Conservation Tillage	0.75	2	6	3	27	1.5	40.25
Manure Handling and Storage	1.5	2	6	9	18	1.5	38
Shoreline Maintenance	0.75	2	6	6	18	2.5	35.25
Tributary Alum Treatment	1.5	2	6	3	18	4	34.5
Conservation Planning	1.5	2	4	6	18	1.5	33
Aeration or Water Column Circulation	0.75	10	4	3	9	4	30.75
Cover Crops	1.5	2	4	3	18	1.5	30
Drawdown	0.75	10	4	3	9	1.5	28.25
Nutrient Management Plans	0.75	2	2	3	18	1.5	27.25

KCI

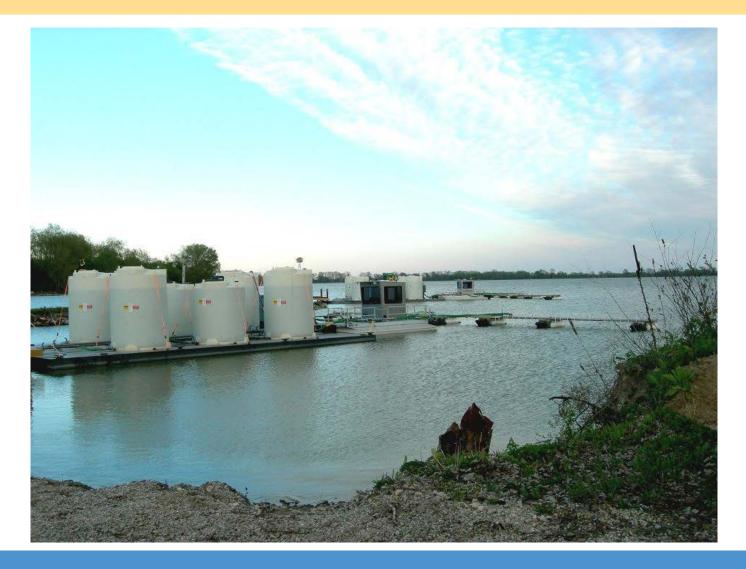
Consolidated Action Plan – Project Priority Ranking

- Provides Comprehensive Project list
- Does Not Negate Individual Plans
- Basis for Political Action Plan

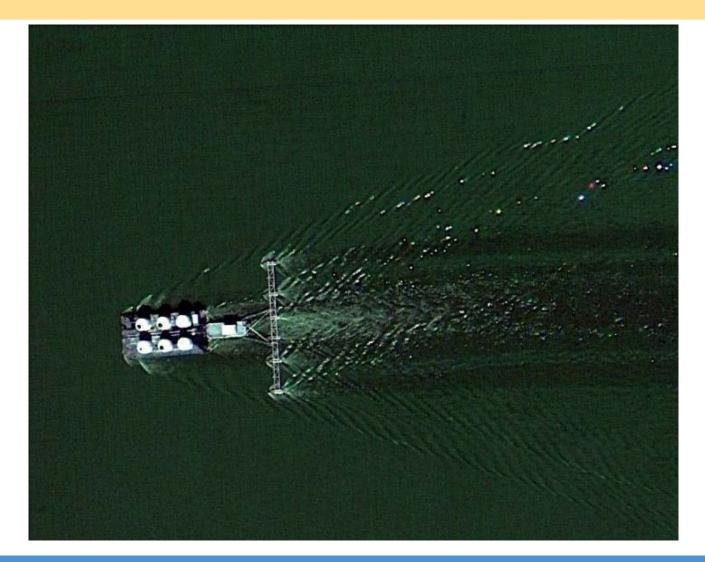
				-
				Total
Project	OEPA	LRC	NRCS	Score
Dredge Sediment Depositions	88.5	77	83	248.5
Sequestration of Soluble Reactive Phosphorus	82	77.25	87	246.25
Beneficial Use of Organic Waste	81.5	76.5	82	240
Dredging	70.5	82.5	83	236
Hydrogen Peroixide/ Alum Treatment	79	76.5	75	230.5
Lake Alum Treatment	79	75.75	75	229.75
Manure Handling and Storage	52.5	75.5	83.5	211.5
Conservation Tillage	49.5	50.5	80	180
Manure Management Technology	49.5	50.5	76.5	176.5
Tile Control Structures	56.5	74.5	45	176
Constructed Wetlands	51	45	79.5	175.5
Treatment Systems on Tributaries	50	42	81.5	173.5
Filter Areas	56.5	47.25	61	164.75
Tributary Alum Treatment	35.25	44.25	83.5	163
Cover Crops	39	29	83	151
Treatment Train Establishment	50	48	51.5	149.5
Wetlands	29.5	64.5	54	148
Filter Strips or Riparian Buffers	43.5	40.25	64	147.75
Rough Fish Removal	56.5	34.25	54.5	145.25
Conservation Tillage	40.25	42.25	56.5	139
Filter Strips/Areas (*FOTG 393-Designed)	47	39.75	50	136.75
Restoration of Buffers and Streams	48.5	37.25	50	135.75
Milkhouse Wastewater	48	41	42	131
Controlled Drainage	46.25	30	50.5	126.75
Lawn Fertilizer Reduction	49	35.5	40	124.5
Cover Crops	34.5	44	42	120.5
Grassed Waterways	38	28.75	51	117.75
Nutrient Management Plans	43	41.25	32	116.25
Algal Flipping	49	32.25	32	113.25
Streambank Protection	38.5	33.5	38	110
Septic Systems	35.5	33.5	40	109
Aeration and Circulation	36.5	32.25	32	100.75
Water Level Management	36.5	32.25	32	100.75
Conservation Planning	33	35.5	27.5	96
Nutrient Management Plans	27.25	31.5	29.5	88.25
Aeration or Water Column Circulation	30	28.75	27	85.75
Shoreline Maintenance	30.75	28.25	22	81
Drawdown	28.25	31	21	80.25
120				
LRC				
OEPA				
NRCS				

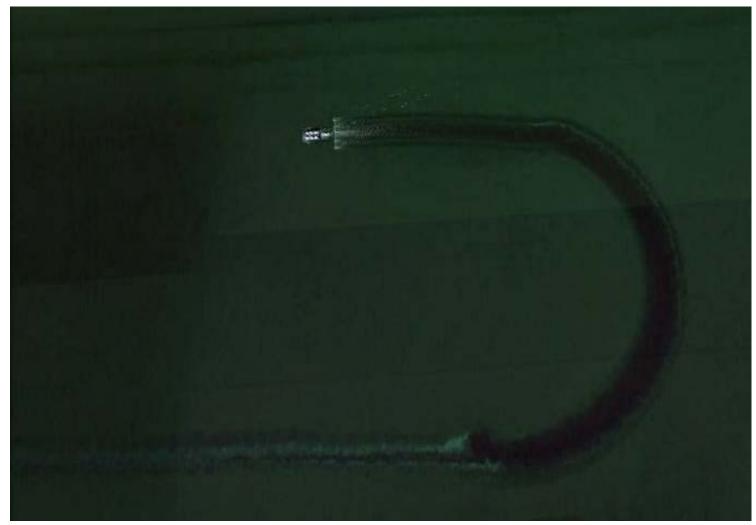
Consolidated Action Plan - CRA

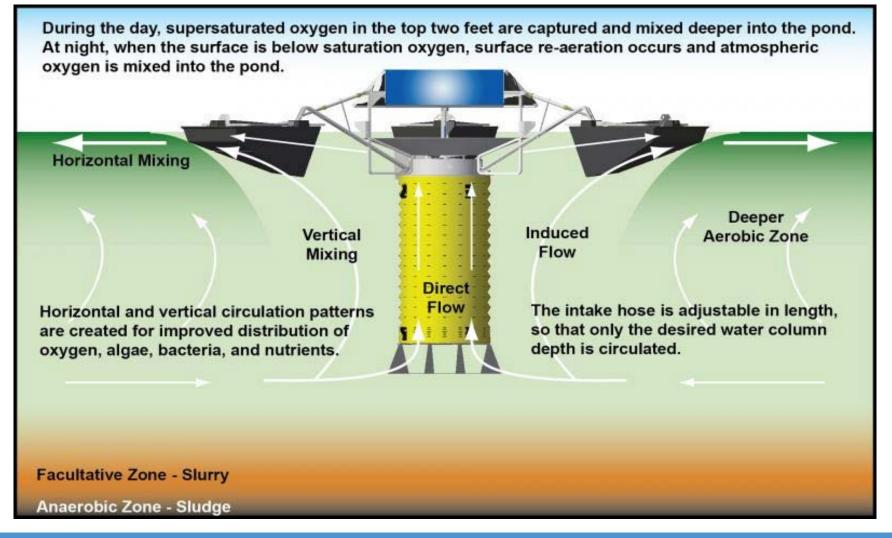
- Developed 8 Critical Response Actions to address
 - Chemical Treatments
 - Dredge Accumulated Sediments
 - Beneficial Use of Organic Waste
 - Watershed Best Management Practices
 - Rough Fish Removal
 - Lake Manager
 - Natural Resources Capital Improvement Program
 - Water Pollution Control Loan Fund
 - Economic Infrastructure


Specific Response Action Implemented

Alum Treatment
Solar Bees
Prairie Creek Treatment Train
Prairie Creek Littoral Wetland
Cold Water Creek Treatment Train

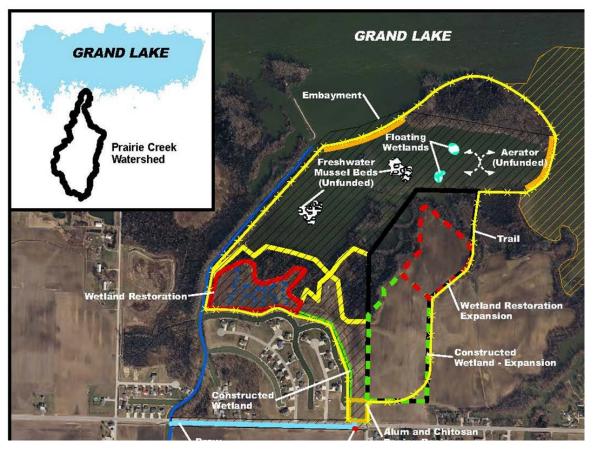

Alum Treatment


Alum Treatment


Alum Treatment

Solar Bees

Solar Bees



Prairie Creek Treatment Train

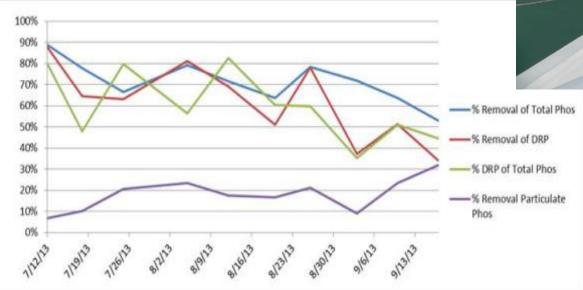
- > Engineered
 - Mechanical Pumping

 4 MGD
- Bio-Technical
 - Constructed Wetlands
 - o 10 acres
- > Natural
 - Restored Wetlands
 - o 30 acres

MAID System

- Controls pumping into system
- Doses chemical as required
- Tracks water quality
 - ≻ Ph
 - > Turbidity
 - Flow rates
- Allows remote monitoring and

control


Constructed Wetland Cells

Five cells, alternating deep and shallow water

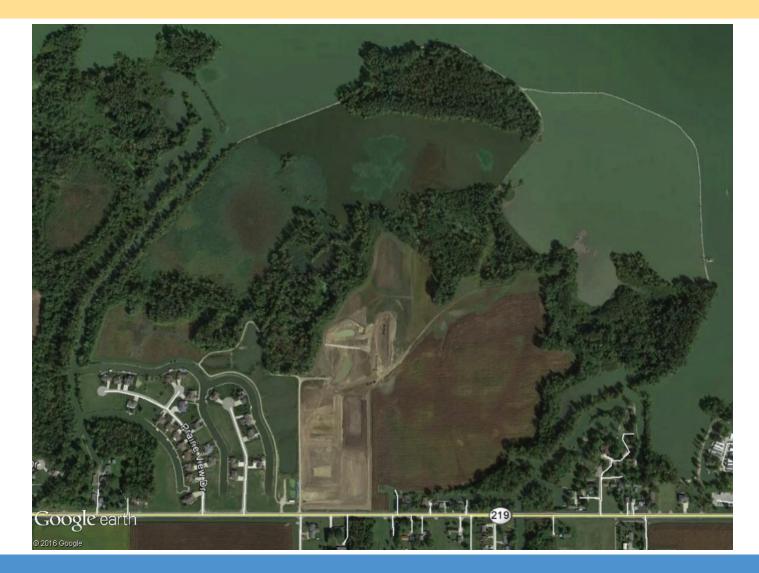
Results

- ➢ 65% reduction in Total Phos
- ➢ 30% reduction in Total N
- Trophic shift in embayment

Prairie Creek Littoral Wetland - PCLW

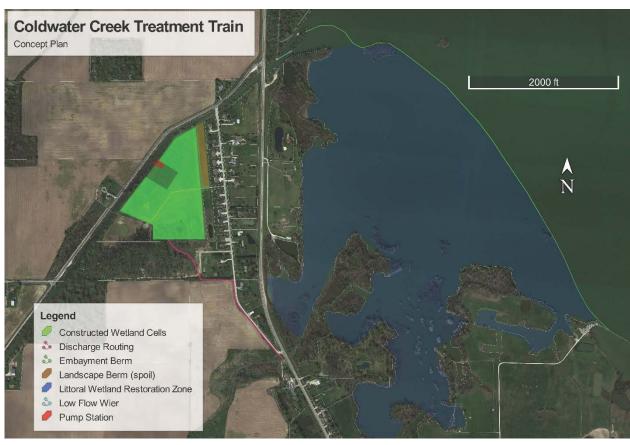
Basic Design

- Deep and shallow marsh system
- Designed to improve Fish and Wildlife habitat
- Will receive flow from PCTT
- Encapsulation of nutrient laden sediment



Prairie Creek Littoral Wetland - PCLW

Prairie Creek Littoral Wetland - PCLW


Coldwater Creek Treatment Train - CCTT

Cold Water Creek Treatment Train

- Engineered
 - Mechanical Pumping

 6 MGD
- Bio-Technical
 - Constructed Wetlands
 - o 15 acres
 - Flow Diversion
- Natural
 - Restored Wetlands
 - o 250 acres

Coldwater Creek Treatment Train - CCTT

Coldwater Creek Treatment Train - CCTT

Results

Restoration Investment

- Investment of over 7 million in response efforts by project partners
 - In lake Alum treatment
 - Development of systems to treat nutrient loading
 - No major blooms since 2010

Economic Response

- Estimated Return on Investment of nearly 65 million to local economy
 - Initiation of multiple corporations using stressors as material
 - Lowest un-employment rate in Ohio (4.9%)
 - 20% increase in tax collections
 - 32% increase in real estate conveyances
 - Resurgence of recreational economy hotels, restaurants, facilities, events

Adaptive Management Plan

► No Plan Survives First Contact

► Re-Evaluation of Plan Premises

Re-Affirmation of Partners

Re-Engagement of Stakeholders

Grand Lake St. Marys Adaptive Management Plan Summary *Moving Forward*

September 2017

Conclusions

- Ecosystem restoration is a societal endeavor not just a rural initiative
- Solutions to mitigate the existing problem and resolve the future ones must integrate the concepts of sustainability and economics
- Collaboration between key stakeholder groups is imperative to generating and sustaining momentum to win the war

QUESTIONS