
Other Considerations

NEWSC Stormwater Pond Vegetation Management and Maintenance Workshop

November 14, 2017

Pond Location

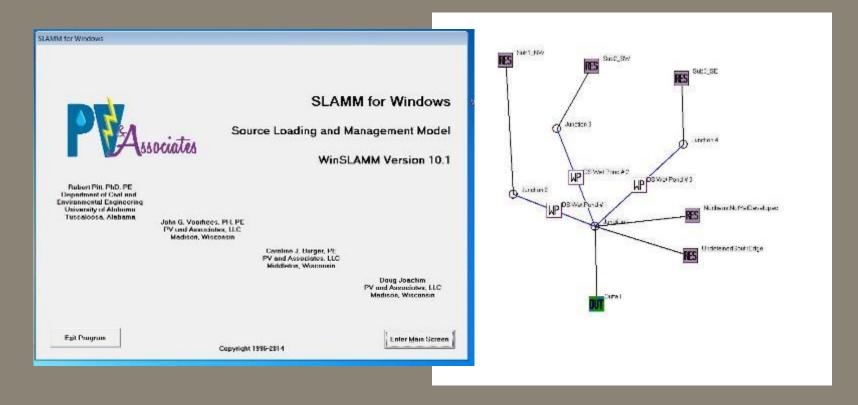
- Regional facility or site-specific?
- Public or private owned?
- Watershed and hydrology evaluation

Hydrology: Detention for Peak Flows / Floods

- Consider watershed-specific criteria
- Downstream capacity

The <u>base level</u> limits are applied everywhere stream protection limits are not applicable. The <u>stream protection level</u> limits apply to development taking place in and around the Ulao Creek and Mole Creek watersheds, referred to as the <u>stream protection area</u>.

The **base level** limits are generally equivalent to a simpler rendition of existing discharge limits as follows:


- 1. The 100-year post-development peak runoff discharge shall not exceed the lesser of:
- a. 10-year predevelopment peak runoff discharge, or
- Maximum hydraulic capacity of existing downstream conveyance facilities as determined by the Town.
- The post-development runoff discharges for storms up to and including the 10-year shall not exceed the 2-year predevelopment peak runoff discharge.

The stream protection level limits focus on reducing discharges for the most common rainfalls and try to maintain a more natural water regime in the watershed.

- 1. The 100-year post-development peak runoff discharge shall not exceed the lesser of:
- a. 2-year predevelopment peak runoff discharge, or
- Maximum hydraulic capacity of existing downstream conveyance facilities as determined by the Town.
- The post-development runoff discharges for storms up to and including the 25-year shall not exceed the 2-year predevelopment peak runoff discharge.

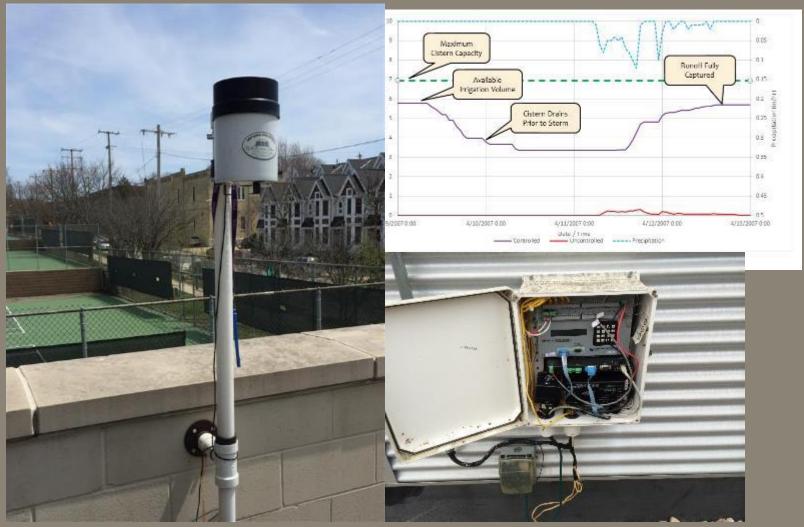
Hydrology: Water Quality Mgmnt. and Low Flows

WinSLAMM: water budget and rain-by-rain performance

• Can be useful for planting

design

	5 . d .					MBV working WithPlants Neo/TermPosidev WP9003 -45 WaterBalancecov - Facel										
le	Home	Insert	Page La	your Fo	rmulas D	ata Review	Review View STANTEC Add ins ACROBAT Q Tell me what you want to do									
	∦ Cat F⊴ Copy -	0	iibn - 11		· K K =		»· 8	Wrap Test		General	÷.,	ця.	P	Normal	Bac	
te	🥑 Comat P	anter	8 / U	- ± -	0 - <u>A</u> -	ē	<u>-</u>	Merge & Ce	nter *	\$ - % +	*** **	Conditional I Formatting -		Good	Net	
	Clipboard	-72		Fort	4		Algenieri		76	Number	15			Styles		
9		1 ×	¥ 3	fe 3												
γ_{0}	4	8	C	D	E	E	G	H	t	1	ĸ	1	M	N	0	
	m Rai	n Numé F	tain Depth	Rain Date:	Time (Iulia	Final Time N	laximum	Minimum I F	went Ma	Fvent Max	Event Ma	is Total Even	Event Infl	Fweit Infk	Event Hyd	
2.	3	18	0.08	03/28/69	82	15	10	10	0.1067	0.1057	0.071	1 557.9	551.8	0	551.5	
E	1	19	0.29	04/01/69	85	15	10.01	10	0.2719	0.2719	0.213	7 3091.5	3095.9	0	3095.9	
2	3	20	0.43	04/04/69	89	15	10.01	10	0.4452	0.4452	0.349	9 5060.7	5069.5	0	5070.3	
	E of the	21	0.71	04/08/69	93	15	10.01	10	0.6/19	0.6/19	0.502	2 9369.3	9372	0	93/2	
	6 16 3	22	0.52	04/14/69	00	15	10.01	10	0.5646	0.5546	0.431	4 6418.1	6429.2	0	6429.6	
P.	Sector 3	23	0.1	04/15/69	101	15	10	10	0.1504	0.1504	0.100	2 786.1	775.8	0	777.1	
	3	24	1.26	04/15/69	101	15	10.02	10	0.8011	0.8011	0.619	8 18214.7	18223.2	0	18222.7	
-	3	25	0.04	04/21/69	105	15	10	10	0.0343	0.0343	0.022	8 179.2	177.1	0	177.7	
	3	26	0.01	04/27/69	112	15	10	10	0.0028	0.0028	0.001	2 6.7	5.0	0	5.5	
	1.001	27	0.06	04/28/69	113	15	10	10	0.0317	0.0317	0.025	6	343.7	0	343.9	
4	3	28	0.01	05/01/69	115	15	10	10	0.0028	0.0028	0.001	2 6.7	5.6	0	5.5	
8	Like J	29	0.18	05/05/69	120	15	10.01	10	0.6621	0.5521	0.312	1 1730.4	1/19.1	. 0	1/19.5	
3	1 1	.30	0.02	05/06/69	121	15	10	10	0.0113	0.0113	0.004	8 26.7	22.3	0	22.5	
	3	31	0.06	05/06/69	121	15	10	10	0.0417	0.0417	0.030	/ 344.3	364.5	0	344.Z	
2	1	32	0.26	05/08/69	123	15	10.01	10	0.476	0.475	0.305	1 2705.9	2717.5	0	2717.4	
	3	33	0.22	05/08/69	123	15	10	10	0.2681	0.2681	0.197	6 2215.5	2215.3	0	2217.1	
		34	0.02	05/10/69	125	15	10	10	0.00/1	0.00/1	0.003	9 20.7	25.0	0	26.4	
34	1	.35	0.18	05/13/69	128	15	10.01	10	0.6621	0.6621	0.312	1 1730.4	1710.1	0	1719.5	
13	1 13	36	1.33	05/17/69	132	15	10.01	10	0.57	0.57	0.492	4 19441.1	19441.5	0	19443	
1	1000	37		05/20/69		15	10	10	0.0073		0.005		60		59.7	


Water budget and permanent pool levels

Permanent pool too low
Permanent pool too high

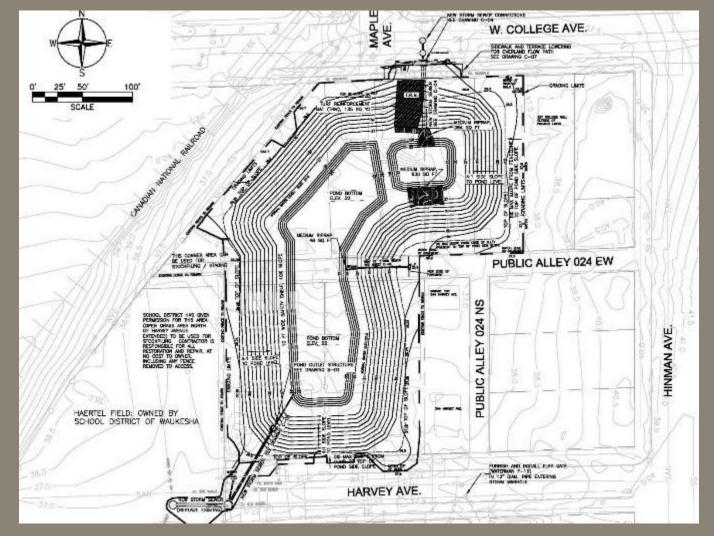
Real Time Control

Soil Investigation and Testing

- Geotechnical
- Environmental
- Stormwater infiltration
- Vegetation selection and growth

Vegetation Selection

Plant Establishment


- Seeding
- Plugs
- Containers

Dwight Sipler, Creative Commons License

Layout and Grading Design

Erosion Protection and Turf Reinforcement Mats

Temporary Degradable Materials

Single Net Straw

Use on slopes with moderate run-off conditions. Made from 100% straw with a lightweight photodegradable netting on the top side.

Coconut Straw

For slopes with heavy runoff conditions and where protection is needed for 2-4 years. Made from a homogenous blend of 70% straw and 30% coir fiber. CS2 has a lightweight photodegradable netting on the bottom side and a long lasting UV stabilized, photo- degradable netting on the top side.

Double Net Straw

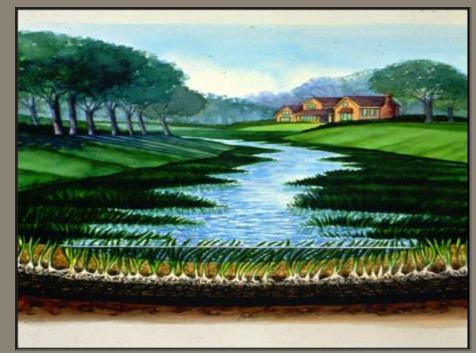
Use on slopes with medium run-off conditions. Made from 100% straw with a lightweight photodegradable netting on both sides.

Coconut

Typically used as an erosion control blanket on extreme slopes and very harsh sites. Made from 100% natural coir fiber with a long lasting UV stabilized, photodegradable net on both sides.

What are Turf Reinforcement Mats (TRMs)?

- UV stabilized, nondegradable, synthetic fibers, nettings and/or filaments processed into three dimensional reinforcement matrices
- Designed for permanent soil erosion and drainage applications where water flows exert stresses that exceed the limits of vegetation



How Do TRMs Function?

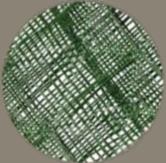
- They extend the performance limits of natural vegetation by:
 - Acting as an "artificial" root system
 - Retaining soil particles and seeds
 - Accelerating vegetative development
 - Permanently reinforcing the vegetative

Major TRM Manufacturers

- Coldbond (EnkaMat)
 - Nylon Fibers Chemically Fused
- Propex
 - Polypropolene Woven and stitchbonded products
- North American Green (NAG)
 - All Stitch-Bonded Products, many with biodegradables
- Western Excelsior
 - All Stitch Bonded Products with no UV additives
- ECB (Erosion Control Blanket)
 - All Stitch Bonded Products with no UV additives

Standard Stitch-Bonded TRMs (LL450)

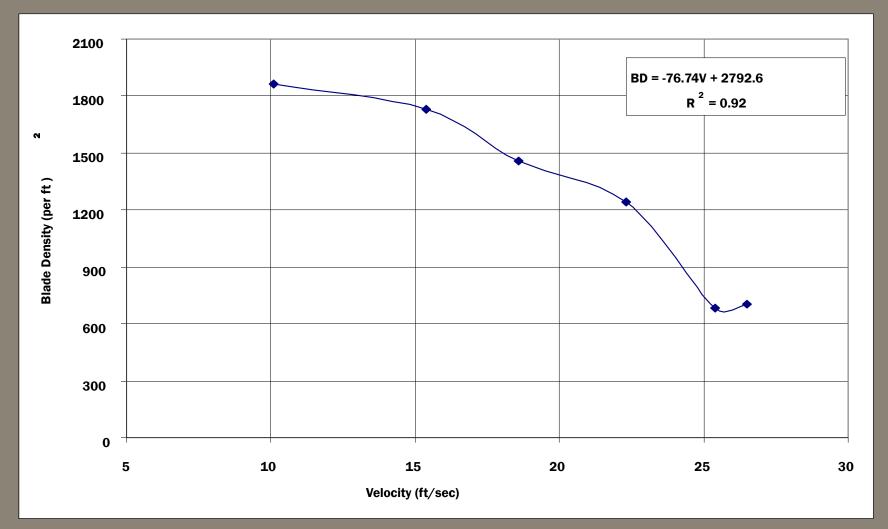
- First Generation TRMs
- Three Layers
 - Two Nets on the Outside
 - Polypropylene Fibers / Composite Biodegradable Layer
 - Stitch-Bonded
- Tensile Strength (400 lb/ft)
- Moderate UV Stabilization
 - 12 year design life
 - 80% at 1000 hours (ASTM D 4355)
- Appropriate Applications
 - Vegetated and Irrigated Moderate Flow Channels
 - Greenbelts, Golf Courses, etc.
 - Low stress conditions
 - Slopes

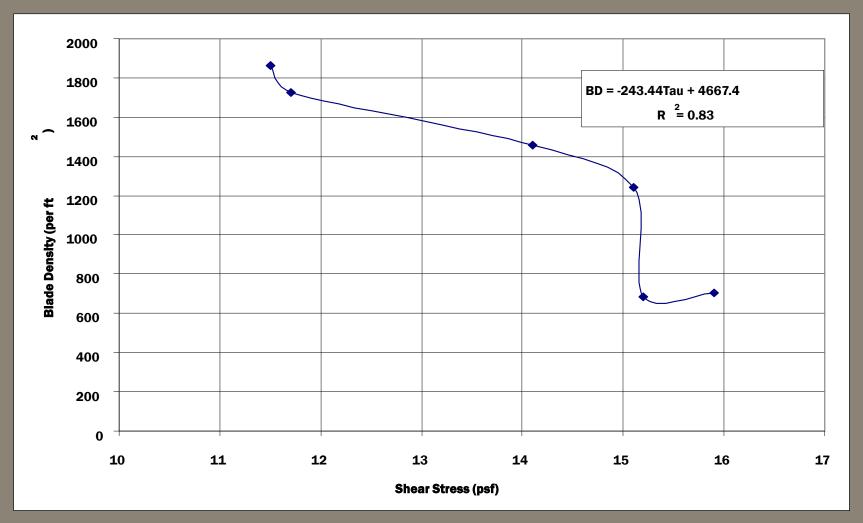


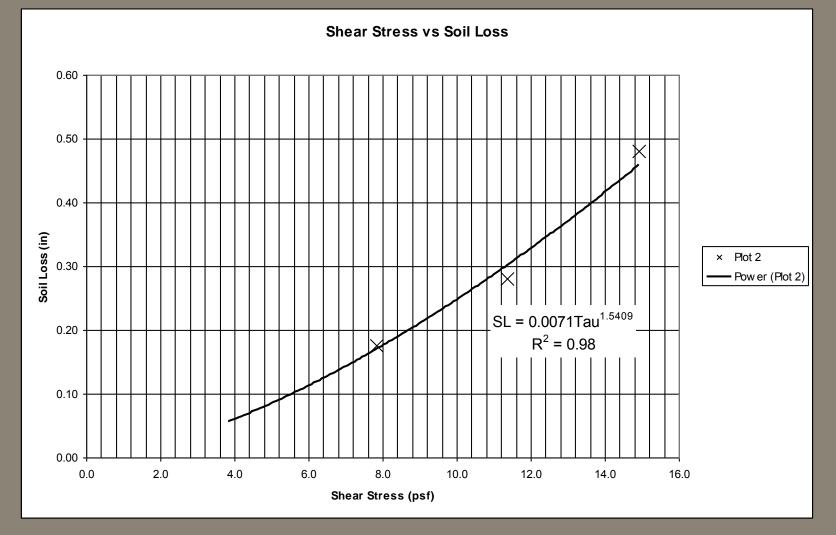
2nd Generation Standard TRM (LL300)

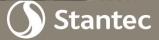
- Unique WOVEN Technology
 - No nets or stitching = No weak layers
 - NOT a composite
 - Designed to Address the limitations of 1st Generation TRMs
- UV Stabilized Polypropylene Fibers, Woven into Homogeneous Three-Dimensional Structure
- Tensile strength (2,000 lb/ft)
- High UV stabilization (90% @ 3,000 hours)
- Greater Flexibility
- Estimated Functional Life 25 years

Pond Overflows






Vegetated Density Checked After Testing



Tested Extensively

- Developed to withstand catastrophic storm conditions like those generated by Hurricane Katrina
- Tested in over 25 large-scale, high velocity flumes at independent testing facilities
- Tested by experts at Colorado State University Engineering Research Center with USACOE oversight

Designing for future access and maintenance

Maintenance Agreements and Plans

Vince Bocci, U.S. Fish & Wildlife Service

Specifications

- Soil preparation
- Decompaction
- Topsoil quality and thickness

Bidding / Contracting

- Contractor Prequalification
- Consider separating earthwork and landscape contracts
- Native landscape contractors

Construction Sequencing

Construction Phase Oversight

Questions?

Stantec