

NEWSC Filtration Workshop

Overview of State Regulations for Filtration Systems

Why Post-Construction?

- Road Salts
- Oil and Grease
- Heavy Metals
- Heat
- PAHs
- Sediment
- Nutrients
- Oxygen-Demanding Substances
- Pathogens
- Trash

Post Construction Applicability Section NR 151.121 (2) Exemptions

- <10% connected impervious AND < 1 acre impervious
 - Protective area standard still applies
- Agricultural facilities & practices
- Underground utility construction

Performance Standards

Filtration and Infiltration Practices can help:

- Reduce pollutants in runoff
 - Mitigate increased runoff
 - Increase

Pollution Control

Section NR 151.122 Total Suspended Solids (TSS)

- New Development and Infill: 80% TSS reduction from site
 - No credit for treating offsite area
- Redevelopment: 40% TSS reduction of load from parking areas and roads
 - No credit for reduction in impervious or conversion of surface type
 - No exemption for maintaining same impervious area

Correlation: Size and %TSS

Nationwide Urban Runoff Program (NURP) Particle Size Distribution

Particle Size (Microns)

- If redeveloping post-2004 site, must maintain effort
- Some devices are marketed as providing 80% TSS control but often that is based on testing with only sand sized particles

NR 151.123 Peak Discharge Performance Standard

- Applies to New Development and Infill > 5 acres
- Exemption for direct discharge to lake > 5,000 acres or waterway segment draining > 500 square miles

Peak Flow Control

Storms

Post-Development \leq Pre-Development Discharge for

- 1-Year, 24-Hour Rainfall
- 2-Year, 24-Hour Rainfall

For Type A soils, discharge is typically 0 cfs under pre-development for small storms. Infiltration can help meet this.

Infiltration

NR 151.124 Infiltration Performance Standard

- <u>Practices</u> Required
- Requirement varies by % connected impervious
- Percentage of predevelopment infiltration or maximum effective infiltration area

Infiltration

Optional Areas ('Exemption')

- Field Tested Rate < 0.6 inches/hr
- Clay soils
 - -MUST have on-site soil data
 - -Soil types MUST be in NR151.124(4)(c)2
 - Within 5' of bottom of systems

-May only apply to part of site

Not a prohibition from infiltration

Partially Exempt Sites

And have been

Infiltration

Optional Source Areas ('Exemption')

- Commercial and Industrial Parking and Access Roads < 5,000 SF
- Redevelopment (Unless original development post-2004))
- Infill < 5 acres
- Roads in commercial, industrial, and institutional land uses and residential arterials

Benefits of Infiltration

- Maintain ground water levels
- Maintain base flow in streams
- Reduce peak flows
- Improve water quality

Low Imperviousness

Up to 40% Connected Impervious

Post-Development Infiltration Volume ≥ 90% Pre-Development Infiltration Volume

Requirement capped at 1% of total site as Effective Infiltration Area

Moderate Imperviousness

40-80% Connected Impervious

Post-Development Infiltration Volume ≥ 75% Pre-Development Infiltration Volume

Requirement capped at 2% of total site as Effective Infiltration Area

High Imperviousness

>80% Connected Impervious

Post-Development Infiltration Volume ≥ 60% Pre-Development

Requirement capped at 2% of total site as Effective Infiltration Area

Technical Standards

444444

Business	Licenses & Regulations	Recreat	tion Env. Pr
Post-construction standards		Number	Effective date
Bioretention for infiltration [PDF]		1004	0ct-14
Compost [PDF]		S100	0ct-17
Infiltration basin [P Fig. 1 [PDF], Fig. 2	<u>df]</u> [pdf], Fig. 3 [pdf], Fig. 4 [pdf]	1003	Oct-04
Infiltration trench [PDF]		1007	May-12
Permeable pavement [PDF] Tech note [PDF]		1008	Feb-16
Proprietary storm water sedimentation devices [PDF]		1006	Apr-09
Rain Garden [PDF]		1000	Sep-18
Site evaluation for stormwater infiltration [PDF]		1002	Sep-17
Vegetated swale [PDF]		1005	Dec-17
Wet detention pond Part 1 [PDF], Part 2 [PDF]		1001	Oct-07
Errata and notes			

- Process to assess and model grass swales (TSS reduction) (Nov-10) [PDF]
- Internally Drained Area Guidance (Apr-09) [PDF]

Additional information

- Water quality review procedures for additives [PDF]
- Allowable usage rates for water applied additives [PDF]
- Modeling post-construction storm water management treatment [PDF]
- Meeting infiltration performance standard of ch. NR 151 [PDF]
- Storm water construction technical standards
- <u>Rain gardens</u>
- Storm water basins using natural landscaping for water quality and aesthetics [PDF exit DNR]
- <u>Turf nutrient management</u>
- Storm water detention ponds site safety design [PDF exit DNR]
- Storm water best management practices fact sheets
- Establishment of protective areas in wetlands [PDF]
- Agricultural technical standards
- <u>Runoff management models/guidance</u>

Last revised: Tuesday September 11 2018