

NEWSC

WDNR Technical Standard

1002 - Site Evaluation for Stormwater Infiltration

December 2018

Jan C. Kucher, P.E. Water Resources Engineer, Wisconsin DNR

> WISCONSIN DEPT. OF NATURAL RESOURCES

There is no life without water Because water is needed to make coffee

Contents

- Purpose
- Key Take-Aways
- Site Evaluation for Storm Water Infiltration
- Questions

Purpose

• Provide municipalities and engineers with facility infiltration investigation methods to aid in storm water facility design.

Key Take-Aways

- Goal: protect our waters
- Investigation methods
- Phased evaluation
- Field infiltration testing
- Wrap up findings in report to be used for design

FIGURE 2 - EXAMPLE BIORETENTION BASIN SECTION

Not to Scale

- Steps
 - A Initial Site Screening

- B Preliminary Field Verification of Initial Screening
- C Establishment of Design Infiltration Rate
- D Soil and Site Evaluation Report

Note that if water is moving (dynamic), the infiltration rate is divided by 2, as noted in the vegetated swale standard

Step A - Initial Site Screening – Paper Study

• Wetlands, waterways

ALAA ALA AL

- Well location and setbacks
- Karst geologic features
- Topography, soils, groundwater
- Endangered species

Step B – Preliminary Field Verification of the Initial Site Screening

• Soil borings

and a shall be a

- Depth to groundwater and bedrock
- Soil texture
- Verify potential exemptions (coarse sand not acceptable)

Step C – Establishment of Design Infiltration Rate

And an and an and

- Step C.1. Field Evaluation of Specific Infiltration Areas
- Step C.2. Infiltration Rate Exemption
- Step C.3. Infiltration Rate Determination Options 1-3

Step C.1. – Field Evaluation of Specific Infiltration Areas

– Test pits – Table 1

- Test pit to 5 ft below native soil interface Figure 2
- Morphological soil profile
- Proximity to bedrock, groundwater, or seasonal high groundwater

Infiltration Device (Technical Standard Note 2, Note 3)	Tests Required	Minimum Number of Test Pits Required Note 4, Note 5
Rain Garden	Soil texture evaluation or infiltration test	N/A
Infiltration Trenches (1007)	Test pits	1 test pit/100 linear feet of trench with a minimum of 2 test pits, and sufficient to determine / confirm variability
Vegetated Swale (1005)	Test pits	1 test pit/ 500 linear feet of swale with a minimum of 2 test pits, and sufficient to determine / confirm variability
Bioretention Systems (1004)	Test pits	1 test pit or a number sufficient to assess infiltration potential, and sufficient to determine / confirm variability
Surface Infiltration Basins (1003)	Test pits	2 test pits then an additional test pit /10,000 square feet and sufficient to determine / confirm variability
Subsurface Dispersal Systems (N/A) greater than 15 feet in width	Test pits	2 test pits then an additional test pit /10,000 square feet and sufficient to determine / confirm variability
Permeable Pavement Systems (1008) Test pits		2 test pits then an additional test pit /10,000 square feet and sufficient to determine / confirm variability

Table 1.	Evaluation	Requirements	to Proposed	Infiltration	Devices	Note 1
----------	------------	--------------	-------------	--------------	---------	--------

FIGURE 2 - EXAMPLE BIORETENTION BASIN SECTION

Not to Scale

Step C.2. – Infiltration Rate Exemption

- 3 infiltration tests at the native soil interface

– Representative areas

 Exempt if 2/3 of measured infiltration tests are less than 0.6 in/hr

Step C.3. – Infiltration Rate Measurement

- Infiltration Option 1 Infiltration rate not measured, soil compaction mitigated
- Infiltration Option 2 Infiltration rate measured with infield device, soil compaction mitigated
- Infiltration Option 3 Infiltration rate not measured, soil compaction not mitigated

Step C.3.

Option 1 – Infiltration rate not measured, soil compaction mitigated

- Infiltration rate = the lowest infilt rate from Table 2 within 5 ft of the native soil interface
- Example if lowest infiltration rate is 0.13 in/hr (silt loam) at 2 ft below the native soil interface, then soil infiltration rate is 0.13 in/hr

Table 2. Design Static Infiltration Rates for Soil Textures Receiving Storm Water Note 1

Soil Texture	Design Static Infiltration Rate Without Measurement (Inches/Hour) Note 2
Coarse sand or coarser	3.60
Loamy coarse sand	3.60
Sand	3.60
Loamy sand	1.63
Sandy loam, fine sand, loamy sand, very fine	0.50
sand, and loamy fine sand	
Loam	0.24
Silt loam	0.13
Sandy clay loam	0.11
Clay loam	0.03
Silty Clay loam	0.04 Note 3
Sandy clay	0.04
Silty clay	0.07
Clay	0.07

Step C.3.

Infiltration Option 2 - Infiltration rate measured with in-field device, soil compaction mitigated

- Two 2-hour Double-Ring Infiltration tests at 5 water depths (total of 10 tests) at the native soil interface
- Calculate the geometric mean
- Determine the textural infiltration rate (TN) at the native soil interface (Table 2)

Double Ring Infiltrometer

Double Ring Infiltrometer

Step C.3.

Infiltration Option 2 - Infiltration rate measured with in-field device, soil compaction mitigated

- Determine the lowest textural infiltration rate (TL) within 5 ft below the native soil interface (Table 2)
- Divide TN by TL = R and Table 3 to determine the correction factor (A)
- The infiltration rate is the geometric mean (G) / the correction factor

Step C.3.

Infiltration Option 2 - Infiltration rate measured with in-field device, soil compaction mitigated

• Example

- Geometric mean = G = 1.45
- Textural infiltration rate = TN = 0.5 (sandy loam Table 2)
- Lowest infiltration rate within 5 ft of the native soil interface TL = 0.24 (loam Table 2)
- Ratio = R = TN / TL = 0.5 / 0.24 = 2.08
- Correction factor from Table 3 for ratio of 2.08 = 3.5
- Infiltration rate = G / correction factor = 1.45 / 3.5 = 0.41 in / hr

Table 3. Correction Factors for Measured Infiltration Rates at Infiltration Devices Note 1

Ratio of Textural Infiltration Rates (R)	Correction Factor (A)
1	2.5
1.1 to 4.0	3.5
4.1 to 8.0	4.5
8.1 to 16.0	6.5
16.1 or greater	8.5

Step C.3.

Infiltration Option 3 – Infiltration rate not measured, soil compaction not mitigated

- Multiply the textural infiltration rate TL (Table 2) within 5 ft of the native soil interface by the correction factor from Table 4
- Example for sandy loam TL = 0.5 (Table 2)
- Correction factor for sandy loam is 0.4 (Table 4)
- Design infiltration rate = TL x correction factor

 $= 0.5 \times 0.4 = 0.2 \text{ in / hr}$

Table 2. Design Static Infiltration Rates for Soil Textures Receiving Storm Water Note 1

Soil Texture	Design Static Infiltration Rate Without Measurement (Inches/Hour) Note 2
Coarse sand or coarser	3.60
Loamy coarse sand	3.60
Sand	3.60
Loamy sand	1.63
Sandy loam, fine sand, loamy sand, very fine	0.50
sand, and loamy fine sand	
Loam	0.24
Silt loam	0.13
Sandy clay loam	0.11
Clay loam	0.03
Silty Clay loam	0.04 Note 3
Sandy clay	0.04
Silty clay	0.07
Clay	0.07

Table 4. Static Infiltration Rate Correction Factor for Incidental Soil Compaction Note 1

(Compacted Soil Type	Correction Factor (B)	
0	Coarse Sand or Coarser		
Cond	Loamy Coarse Sand	0.9	
Sand	Sand		
	Loamy Sand		
	Sandy Loam		
Loom	Loam	0.4	
Loam	Silt Loam		
	Sandy Clay Loam		
0	Clay Loam		
	Silty Clay Loam		
Clay	Sandy Clay	0.2	
	Silty Clay		
	Clay		

D – Soil and Site Evaluation Report

• Map with key info

- Soil profile
- Proposed infiltration surface and rate for design
- Submit with construction plan submittal for permit coverage

Qualifications

- Steps A and B licensed professional with experience in soil investigations, interpretation, and classification acceptable to the authority having jurisdiction
- Step C licensed professional soil scientist, licensed professional geologist, or other licensed professional with 5 years of experience acceptable to the authority until December 31, 2022, after December 31, 2022 Step C is to be performed by a professional soil scientist or professional geologist

Summary

- Perform preliminary info gathering
- Gather soils information with test pits
- Prepare soil profile information
- Estimate infiltration rate for design
- Prepare evaluation report

Resources

- Post Construction Technical Standards
- <u>Construction Technical Standards</u>
- Department Stormwater Guidance
- <u>Proposed Guidance</u> (all programs)
- WDNR website for technical standards and guidance
 <u>https://dnr.wi.gov/topic/Stormwater/standards</u>

Questions

Thank you for your attendance! All questions are Good

Contact Info

Jan C. Kucher, P.E. Water Resources Engineer WDNR Madison, Wisconsin 608-266-9260 jan.kucher@wisconsin.gov

